首页> 外文OA文献 >On the mathematical consequences of binning spike trains
【2h】

On the mathematical consequences of binning spike trains

机译:关于装箱穗列车的数学后果

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We initiate a mathematical analysis of hidden effects induced by binningspike trains of neurons. Assuming that the original spike train has beengenerated by a discrete Markov process, we show that binning generates astochastic process which is not Markov any more, but is instead a VariableLength Markov Chain (VLMC) with unbounded memory. We also show that the law ofthe binned raster is a Gibbs measure in the DLR (Dobrushin-Lanford-Ruelle)sense coined in mathematical statistical mechanics. This allows the derivationof several important consequences on statistical properties of binned spiketrains. In particular, we introduce the DLR framework as a natural setting tomathematically formalize anticipation, i.e. to tell "how good" our nervoussystem is at making predictions. In a probabilistic sense, this corresponds tocondition a process by its future and we discuss how binning may affect ourconclusions on this ability. We finally comment what could be the consequencesof binning in the detection of spurious phase transitions or in the detectionof wrong evidences of criticality.
机译:我们开始对神经元的binningspike列引起的隐藏效应进行数学分析。假设原始的尖峰序列是通过离散的马尔可夫过程生成的,我们表明装仓生成的随机过程不再是马尔可夫,而是具有无限内存的可变长度马尔可夫链(VLMC)。我们还表明,装箱栅格的定律是数学统计力学中创造的DLR(Dobrushin-Lanford-Ruelle)感中的吉布斯度量。这允许对装仓钉状脉冲串的统计特性得出几个重要的结果。特别是,我们将DLR框架作为自然环境引入,以数学形式将预期形式化,即告诉我们神经系统在进行预测时的“良好程度”。从概率的角度来看,这对应于一个过程的未来条件,我们讨论装箱如何影响我们对此能力的结论。最后,我们评论了装箱在检测虚假相变或检测错误的临界证据方面可能带来的后果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号